3.4.61 \(\int \frac {(a+b \cos (c+d x))^3 (A+B \cos (c+d x))}{\sqrt {\cos (c+d x)}} \, dx\) [361]

Optimal. Leaf size=205 \[ \frac {2 \left (15 a^2 A b+3 A b^3+5 a^3 B+9 a b^2 B\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 \left (21 a^3 A+21 a A b^2+21 a^2 b B+5 b^3 B\right ) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{21 d}+\frac {2 b \left (21 a A b+18 a^2 B+5 b^2 B\right ) \sqrt {\cos (c+d x)} \sin (c+d x)}{21 d}+\frac {2 b^2 (7 A b+11 a B) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{35 d}+\frac {2 b B \sqrt {\cos (c+d x)} (a+b \cos (c+d x))^2 \sin (c+d x)}{7 d} \]

[Out]

2/5*(15*A*a^2*b+3*A*b^3+5*B*a^3+9*B*a*b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d
*x+1/2*c),2^(1/2))/d+2/21*(21*A*a^3+21*A*a*b^2+21*B*a^2*b+5*B*b^3)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/
2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/d+2/35*b^2*(7*A*b+11*B*a)*cos(d*x+c)^(3/2)*sin(d*x+c)/d+2/21*b*(21*
A*a*b+18*B*a^2+5*B*b^2)*sin(d*x+c)*cos(d*x+c)^(1/2)/d+2/7*b*B*(a+b*cos(d*x+c))^2*sin(d*x+c)*cos(d*x+c)^(1/2)/d

________________________________________________________________________________________

Rubi [A]
time = 0.31, antiderivative size = 205, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 33, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.182, Rules used = {3069, 3112, 3102, 2827, 2720, 2719} \begin {gather*} \frac {2 b \left (18 a^2 B+21 a A b+5 b^2 B\right ) \sin (c+d x) \sqrt {\cos (c+d x)}}{21 d}+\frac {2 \left (21 a^3 A+21 a^2 b B+21 a A b^2+5 b^3 B\right ) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{21 d}+\frac {2 \left (5 a^3 B+15 a^2 A b+9 a b^2 B+3 A b^3\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 b^2 (11 a B+7 A b) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{35 d}+\frac {2 b B \sin (c+d x) \sqrt {\cos (c+d x)} (a+b \cos (c+d x))^2}{7 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[((a + b*Cos[c + d*x])^3*(A + B*Cos[c + d*x]))/Sqrt[Cos[c + d*x]],x]

[Out]

(2*(15*a^2*A*b + 3*A*b^3 + 5*a^3*B + 9*a*b^2*B)*EllipticE[(c + d*x)/2, 2])/(5*d) + (2*(21*a^3*A + 21*a*A*b^2 +
 21*a^2*b*B + 5*b^3*B)*EllipticF[(c + d*x)/2, 2])/(21*d) + (2*b*(21*a*A*b + 18*a^2*B + 5*b^2*B)*Sqrt[Cos[c + d
*x]]*Sin[c + d*x])/(21*d) + (2*b^2*(7*A*b + 11*a*B)*Cos[c + d*x]^(3/2)*Sin[c + d*x])/(35*d) + (2*b*B*Sqrt[Cos[
c + d*x]]*(a + b*Cos[c + d*x])^2*Sin[c + d*x])/(7*d)

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2827

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 3069

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e
_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*B*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*((c + d*Sin[e + f*
x])^(n + 1)/(d*f*(m + n + 1))), x] + Dist[1/(d*(m + n + 1)), Int[(a + b*Sin[e + f*x])^(m - 2)*(c + d*Sin[e + f
*x])^n*Simp[a^2*A*d*(m + n + 1) + b*B*(b*c*(m - 1) + a*d*(n + 1)) + (a*d*(2*A*b + a*B)*(m + n + 1) - b*B*(a*c
- b*d*(m + n)))*Sin[e + f*x] + b*(A*b*d*(m + n + 1) - B*(b*c*m - a*d*(2*m + n)))*Sin[e + f*x]^2, x], x], x] /;
 FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m
, 1] &&  !(IGtQ[n, 1] && ( !IntegerQ[m] || (EqQ[a, 0] && NeQ[c, 0])))

Rule 3102

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (
f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Dist[1/(
b*(m + 2)), Int[(a + b*Sin[e + f*x])^m*Simp[A*b*(m + 2) + b*C*(m + 1) + (b*B*(m + 2) - a*C)*Sin[e + f*x], x],
x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] &&  !LtQ[m, -1]

Rule 3112

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])*((A_.) + (B_.)*sin[(e
_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*d*Cos[e + f*x]*Sin[e + f*x]*((a +
 b*Sin[e + f*x])^(m + 1)/(b*f*(m + 3))), x] + Dist[1/(b*(m + 3)), Int[(a + b*Sin[e + f*x])^m*Simp[a*C*d + A*b*
c*(m + 3) + b*(B*c*(m + 3) + d*(C*(m + 2) + A*(m + 3)))*Sin[e + f*x] - (2*a*C*d - b*(c*C + B*d)*(m + 3))*Sin[e
 + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] &&
  !LtQ[m, -1]

Rubi steps

\begin {align*} \int \frac {(a+b \cos (c+d x))^3 (A+B \cos (c+d x))}{\sqrt {\cos (c+d x)}} \, dx &=\frac {2 b B \sqrt {\cos (c+d x)} (a+b \cos (c+d x))^2 \sin (c+d x)}{7 d}+\frac {2}{7} \int \frac {(a+b \cos (c+d x)) \left (\frac {1}{2} a (7 a A+b B)+\frac {1}{2} \left (5 b^2 B+7 a (2 A b+a B)\right ) \cos (c+d x)+\frac {1}{2} b (7 A b+11 a B) \cos ^2(c+d x)\right )}{\sqrt {\cos (c+d x)}} \, dx\\ &=\frac {2 b^2 (7 A b+11 a B) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{35 d}+\frac {2 b B \sqrt {\cos (c+d x)} (a+b \cos (c+d x))^2 \sin (c+d x)}{7 d}+\frac {4}{35} \int \frac {\frac {5}{4} a^2 (7 a A+b B)+\frac {7}{4} \left (15 a^2 A b+3 A b^3+5 a^3 B+9 a b^2 B\right ) \cos (c+d x)+\frac {5}{4} b \left (21 a A b+18 a^2 B+5 b^2 B\right ) \cos ^2(c+d x)}{\sqrt {\cos (c+d x)}} \, dx\\ &=\frac {2 b \left (21 a A b+18 a^2 B+5 b^2 B\right ) \sqrt {\cos (c+d x)} \sin (c+d x)}{21 d}+\frac {2 b^2 (7 A b+11 a B) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{35 d}+\frac {2 b B \sqrt {\cos (c+d x)} (a+b \cos (c+d x))^2 \sin (c+d x)}{7 d}+\frac {8}{105} \int \frac {\frac {5}{8} \left (21 a^3 A+21 a A b^2+21 a^2 b B+5 b^3 B\right )+\frac {21}{8} \left (15 a^2 A b+3 A b^3+5 a^3 B+9 a b^2 B\right ) \cos (c+d x)}{\sqrt {\cos (c+d x)}} \, dx\\ &=\frac {2 b \left (21 a A b+18 a^2 B+5 b^2 B\right ) \sqrt {\cos (c+d x)} \sin (c+d x)}{21 d}+\frac {2 b^2 (7 A b+11 a B) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{35 d}+\frac {2 b B \sqrt {\cos (c+d x)} (a+b \cos (c+d x))^2 \sin (c+d x)}{7 d}+\frac {1}{5} \left (15 a^2 A b+3 A b^3+5 a^3 B+9 a b^2 B\right ) \int \sqrt {\cos (c+d x)} \, dx+\frac {1}{21} \left (21 a^3 A+21 a A b^2+21 a^2 b B+5 b^3 B\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx\\ &=\frac {2 \left (15 a^2 A b+3 A b^3+5 a^3 B+9 a b^2 B\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 \left (21 a^3 A+21 a A b^2+21 a^2 b B+5 b^3 B\right ) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{21 d}+\frac {2 b \left (21 a A b+18 a^2 B+5 b^2 B\right ) \sqrt {\cos (c+d x)} \sin (c+d x)}{21 d}+\frac {2 b^2 (7 A b+11 a B) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{35 d}+\frac {2 b B \sqrt {\cos (c+d x)} (a+b \cos (c+d x))^2 \sin (c+d x)}{7 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 1.39, size = 158, normalized size = 0.77 \begin {gather*} \frac {42 \left (15 a^2 A b+3 A b^3+5 a^3 B+9 a b^2 B\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+10 \left (21 a^3 A+21 a A b^2+21 a^2 b B+5 b^3 B\right ) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )+b \sqrt {\cos (c+d x)} \left (42 b (A b+3 a B) \cos (c+d x)+5 \left (42 a A b+42 a^2 B+13 b^2 B+3 b^2 B \cos (2 (c+d x))\right )\right ) \sin (c+d x)}{105 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[((a + b*Cos[c + d*x])^3*(A + B*Cos[c + d*x]))/Sqrt[Cos[c + d*x]],x]

[Out]

(42*(15*a^2*A*b + 3*A*b^3 + 5*a^3*B + 9*a*b^2*B)*EllipticE[(c + d*x)/2, 2] + 10*(21*a^3*A + 21*a*A*b^2 + 21*a^
2*b*B + 5*b^3*B)*EllipticF[(c + d*x)/2, 2] + b*Sqrt[Cos[c + d*x]]*(42*b*(A*b + 3*a*B)*Cos[c + d*x] + 5*(42*a*A
*b + 42*a^2*B + 13*b^2*B + 3*b^2*B*Cos[2*(c + d*x)]))*Sin[c + d*x])/(105*d)

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(663\) vs. \(2(241)=482\).
time = 0.36, size = 664, normalized size = 3.24

method result size
default \(-\frac {2 \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (240 B \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b^{3}+\left (-168 A \,b^{3}-504 B a \,b^{2}-360 b^{3} B \right ) \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (420 A a \,b^{2}+168 A \,b^{3}+420 a^{2} b B +504 B a \,b^{2}+280 b^{3} B \right ) \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (-210 A a \,b^{2}-42 A \,b^{3}-210 a^{2} b B -126 B a \,b^{2}-80 b^{3} B \right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+105 A \,a^{3} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+105 A a \,b^{2} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-315 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) a^{2} b -63 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) b^{3}+105 a^{2} b B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+25 b^{3} B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-105 B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) a^{3}-189 B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) a \,b^{2}\right )}{105 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(664\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*cos(d*x+c))^3*(A+B*cos(d*x+c))/cos(d*x+c)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-2/105*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(240*B*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^8*
b^3+(-168*A*b^3-504*B*a*b^2-360*B*b^3)*sin(1/2*d*x+1/2*c)^6*cos(1/2*d*x+1/2*c)+(420*A*a*b^2+168*A*b^3+420*B*a^
2*b+504*B*a*b^2+280*B*b^3)*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)+(-210*A*a*b^2-42*A*b^3-210*B*a^2*b-126*B*a*
b^2-80*B*b^3)*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)+105*A*a^3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/
2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+105*A*a*b^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+
1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-315*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*
c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*a^2*b-63*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2
*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*b^3+105*a^2*b*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d
*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+25*b^3*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*
x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-105*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/
2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*a^3-189*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/
2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*a*b^2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1
/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^3*(A+B*cos(d*x+c))/cos(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

integrate((B*cos(d*x + c) + A)*(b*cos(d*x + c) + a)^3/sqrt(cos(d*x + c)), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.15, size = 284, normalized size = 1.39 \begin {gather*} \frac {2 \, {\left (15 \, B b^{3} \cos \left (d x + c\right )^{2} + 105 \, B a^{2} b + 105 \, A a b^{2} + 25 \, B b^{3} + 21 \, {\left (3 \, B a b^{2} + A b^{3}\right )} \cos \left (d x + c\right )\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 5 \, \sqrt {2} {\left (21 i \, A a^{3} + 21 i \, B a^{2} b + 21 i \, A a b^{2} + 5 i \, B b^{3}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - 5 \, \sqrt {2} {\left (-21 i \, A a^{3} - 21 i \, B a^{2} b - 21 i \, A a b^{2} - 5 i \, B b^{3}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 21 \, \sqrt {2} {\left (-5 i \, B a^{3} - 15 i \, A a^{2} b - 9 i \, B a b^{2} - 3 i \, A b^{3}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 21 \, \sqrt {2} {\left (5 i \, B a^{3} + 15 i \, A a^{2} b + 9 i \, B a b^{2} + 3 i \, A b^{3}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )}{105 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^3*(A+B*cos(d*x+c))/cos(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

1/105*(2*(15*B*b^3*cos(d*x + c)^2 + 105*B*a^2*b + 105*A*a*b^2 + 25*B*b^3 + 21*(3*B*a*b^2 + A*b^3)*cos(d*x + c)
)*sqrt(cos(d*x + c))*sin(d*x + c) - 5*sqrt(2)*(21*I*A*a^3 + 21*I*B*a^2*b + 21*I*A*a*b^2 + 5*I*B*b^3)*weierstra
ssPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) - 5*sqrt(2)*(-21*I*A*a^3 - 21*I*B*a^2*b - 21*I*A*a*b^2 - 5*I*
B*b^3)*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) - 21*sqrt(2)*(-5*I*B*a^3 - 15*I*A*a^2*b - 9*I
*B*a*b^2 - 3*I*A*b^3)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) - 21*s
qrt(2)*(5*I*B*a^3 + 15*I*A*a^2*b + 9*I*B*a*b^2 + 3*I*A*b^3)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0,
cos(d*x + c) - I*sin(d*x + c))))/d

________________________________________________________________________________________

Sympy [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: SystemError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))**3*(A+B*cos(d*x+c))/cos(d*x+c)**(1/2),x)

[Out]

Exception raised: SystemError >> excessive stack use: stack is 3065 deep

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^3*(A+B*cos(d*x+c))/cos(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate((B*cos(d*x + c) + A)*(b*cos(d*x + c) + a)^3/sqrt(cos(d*x + c)), x)

________________________________________________________________________________________

Mupad [B]
time = 1.43, size = 275, normalized size = 1.34 \begin {gather*} \frac {2\,\left (B\,a^3\,\mathrm {E}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )+B\,a^2\,b\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )+B\,a^2\,b\,\sqrt {\cos \left (c+d\,x\right )}\,\sin \left (c+d\,x\right )\right )}{d}+\frac {2\,A\,a^3\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {6\,A\,a^2\,b\,\mathrm {E}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {3\,A\,a\,b^2\,\left (\frac {2\,\sqrt {\cos \left (c+d\,x\right )}\,\sin \left (c+d\,x\right )}{3}+\frac {2\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{3}\right )}{d}-\frac {2\,A\,b^3\,{\cos \left (c+d\,x\right )}^{7/2}\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {7}{4};\ \frac {11}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{7\,d\,\sqrt {{\sin \left (c+d\,x\right )}^2}}-\frac {2\,B\,b^3\,{\cos \left (c+d\,x\right )}^{9/2}\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {9}{4};\ \frac {13}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{9\,d\,\sqrt {{\sin \left (c+d\,x\right )}^2}}-\frac {6\,B\,a\,b^2\,{\cos \left (c+d\,x\right )}^{7/2}\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {7}{4};\ \frac {11}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{7\,d\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((A + B*cos(c + d*x))*(a + b*cos(c + d*x))^3)/cos(c + d*x)^(1/2),x)

[Out]

(2*(B*a^3*ellipticE(c/2 + (d*x)/2, 2) + B*a^2*b*ellipticF(c/2 + (d*x)/2, 2) + B*a^2*b*cos(c + d*x)^(1/2)*sin(c
 + d*x)))/d + (2*A*a^3*ellipticF(c/2 + (d*x)/2, 2))/d + (6*A*a^2*b*ellipticE(c/2 + (d*x)/2, 2))/d + (3*A*a*b^2
*((2*cos(c + d*x)^(1/2)*sin(c + d*x))/3 + (2*ellipticF(c/2 + (d*x)/2, 2))/3))/d - (2*A*b^3*cos(c + d*x)^(7/2)*
sin(c + d*x)*hypergeom([1/2, 7/4], 11/4, cos(c + d*x)^2))/(7*d*(sin(c + d*x)^2)^(1/2)) - (2*B*b^3*cos(c + d*x)
^(9/2)*sin(c + d*x)*hypergeom([1/2, 9/4], 13/4, cos(c + d*x)^2))/(9*d*(sin(c + d*x)^2)^(1/2)) - (6*B*a*b^2*cos
(c + d*x)^(7/2)*sin(c + d*x)*hypergeom([1/2, 7/4], 11/4, cos(c + d*x)^2))/(7*d*(sin(c + d*x)^2)^(1/2))

________________________________________________________________________________________